Effect of heavy water on hepatic lipogenesis in mice

Since the discovery of deuterium the effects of this isotope on many diverse biological systems have been studied¹. In general it has been shown that deuterium in high concentrations is toxic to all organisms, the degree of toxicity being greater in more highly organized organisms. Barbour²⁻⁴ carried out a number of studies on the effects of D_2O ingestion on mice and concluded that when the body water is only 0.2 saturated with D_2O the mice survive but show elevated metabolism. Katz *et al.*⁵ have demonstrated that mice can be maintained on 25 % D_2O in their drinking water for periods up to a year with no adverse effects. Our own observations that tissue-culture cells maintained in 25 % D_2O exhibit lipid-containing inclusions^{6,7} prompted an investigation into the effects of D_2O feeding on hepatic lipogenesis, which is the basis of this report.

Swiss mice were maintained on water containing 25 % D₂O, with ad libitum access to food and water. Every week, for three consecutive weeks, six D₂O mice and six controls were sacrificed and liver homogenates were prepared for studies of hepatic lipogenesis from sodium [2-14C]acetate, using the technique described by Rabinowitz and Gurin⁸. Individual incubations were carried out for each liver. Cholesterol and fatty acids were isolated by previously described methods⁹. The results are presented in Table I.

Weeks	Diet	Cholesterolgenesis		Fatty acid synthesis	
		Counts/min/mg C × 103	% Reduction	Counts/min/mg C × 10 ³	% Reduction
1	$^{ m H_2O}_{ m D_2O}$	1.57 ± 0.16* 1.46 ± 0.18	8	$\begin{array}{c} 9.50 \pm 0.99 \\ 4.92 \pm 0.69 \\ (0.01 < P < 0.001) \end{array}$	49
2	$^{ m H_2O}_{ m 2O}$	1.58 ± 0.14 1.12 ± 0.16 (P = 0.05)	30	3.26 ± 0.54 3.31 ± 0.17	ALAMATINA.
3	$^{ m H_2O}_{ m 2O}$	1.10 ± 0.21 0.69 ± 0.10 (P = 0.10)	38	5.55 ± 0.17 3.15 ± 0.22 (P < 0.001)	44

^{*} Standard error of the mean.

It is evident that in D₂O-fed mice there is a general reduction in hepatic lipogenesis which becomes more pronounced with continuing D₂O ingestion. Histological examination of livers from D₂O-fed mice (carried out by Dr. V. Defend) showed an increase in sudanophilic material over the controls and a progressive increase in sudanophilia as D₂O imbibition continues. Accumulation of liver cholesterol has been shown to inhibit cholesterogenesis^{10,11} and our results might be explained on this basis.

To investigate the effect of D_2O concentration in the liver homogenate parallel experiments were carried out in which the buffer solution was taken to dryness under

reduced pressure and then reconstituted in water or in D_2O (> 99.5 % D_2O). The pH of both solutions was 7. In the homogenates prepared with heavy water the D_2O concentration was about 75 %. In each experiment six incubations were carried out with each buffer solution. The results are summarized in Table II.

In homogenates containing D₂O there was a considerable enhancement of lipogenesis. We may assume that the lipid accumulation in the livers of the D₂O-fed

Expt.	Medium	Cholesterolgenesis		Fatty acid synthesis	
		Counts/min/mg C × 104	increase	Counts/min/mg C × 104	% increase
1	$^{ m H_2O}_{ m 2O}$	1.00 ± 0.43 * 1.31 ± 0.05 (P < 0.001)	31	$\begin{array}{c} 2.84 \pm 0.09 \\ 3.24 \pm 0.05 \\ (0.01 > P > 0.001) \end{array}$	14
2	${ m H_2O} \ { m D_2O}$	1.29 ± 0.04 2.12 ± 0.10 $(P < 0.001)$	65	2.55 ± 0.14 3.69 ± 0.09 (P < 0.001)	45

TABLE II $\label{eq:table_table} \text{Effect of } D_{o}O \text{ incubation on heratic fat synthesis in mice}$

mice was due to accelerated lipogenesis during the early days of feeding. The influence of D_2O on various enzyme systems was studied by a number of early investigators¹ with effects ranging from enhancement of activity to inhibition. The mechanisms underlying our observations await further study.

This work was supported, in part, by the U.S. Atomic Energy Commission, Contract No. AT (30-1)-2299 and by a grant (H-3299) from the National Institutes of Health, USPHS to one of us (D.K.).

Radioisotope Service, Veterans Administration Hospital, and JOSEPH L. RABINOWITZ
The Wistar Institute of Anatomy and Biology,
Philadelphia 4, Pa. (U.S.A.)

Received May 12th, 1960

^{*} Standard error of the mean.

¹ H. J. Morowitz and L. M. Brown, National Bureau of Standards Report, No. 2179 (1953).

² H. G. BARBOUR, Proc. Soc. Exptl. Biol. Med., 32 (1935) 1365.

³ H. G. BARBOUR, Yale J. Biol. Med., 9 (1937) 1951.

⁴ H. G. BARBOUR AND L. E. RICE, J. Pharm. Exptl. Therap., 60 (1937) 97.

⁵ J. J. KATZ, H. L. CRESPI, R. J. HASTERLIK, J. F. THOMSON AND A. J. FINKEL, J. Natl. Cancer Inst., 18 (1957) 641.

⁶ D. KRITCHEVSKY AND E. L. ROTHSTEIN, Presented at Conference on Hydrogen Isotope Effects in Chemistry and Biology, Argonne National Laboratory, Lemont, Illinois June 8-9, 1959.

⁷ I. A. MANSON, R. I. CARR, V. DEFENDI, R. J. ROTHSTEIN, R. W. HARTZELL, IR. AND D.

⁷ L. A. Manson, R. J. Carp, V. Defendi, E. L. Rothstein, R. W. Hartzell, Jr. and D. Kritchevsky, Ann. N.Y. Acad. Sci., in the press.

⁸ J. L. Rabinowitz and S. Gurin, J. Biol. Chem., 208 (1954) 307.

⁹ R. O. Brady and S. Gurin, J. Biol. Chem., 186 (1950) 461.

¹⁰ R. B. Alfin-Slater, M. C. Schotz, F. Shimoda and H. J. Deuel, Jr., J. Biol. Chem., 195 (1952) 311.

¹¹ I. D. FRANTZ, JR., H. S. SCHNEIDER AND B. T. HINKELMAN, J. Biol. Chem., 206 (1954) 465.